He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells.
Nature 618, 80–86 (2023).Article CAS PubMed Google Scholar Lin, R. et al.
All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).Article CAS PubMed Google Scholar Chen, H.
et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).
Article CAS PubMed Google Scholar Ding, B. et al. Dopant-additive synergism enhances perovskite solar modules.
Nature 628, 299–305 (2024).Article CAS PubMed PubMed Central Google Scholar Best research-cell efficiency chart. National Renewable Energy Laboratory https://www.
nrel.gov/pv/cell-efficiency.html (2025).
Leijtens, T., Bush, K. A.
, Prasanna, R. & McGehee, M. D.
Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).
Article CAS Google Scholar Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells.
Science 378, 1295–1300 (2022).Article CAS PubMed Google Scholar Lin, R. et al.
All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).Article CAS PubMed Google Scholar Yu, D.
et al. Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat.
Energy 9, 298–307 (2024).Article CAS Google Scholar Li, N. et al.
Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021).Article CAS PubMed Google Scholar Zhou, Y.
, Poli, I., Meggiolaro, D., De Angelis, F.
& Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat.
Rev. Mater. 6, 986–1002 (2021).
Article Google Scholar Kim, D. H. et al.
Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3, 1734–1745 (2019).Article CAS Google Scholar Yang, G.
et al. Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat.
Photon. 16, 588–594 (2022).Article CAS Google Scholar Yi, Z.
et al. Achieving a high open-circuit voltage of 1.339 V in 1.
77 eV wide-bandgap perovskite solar cells via self-assembled monolayers. Energy Environ. Sci.
17, 202–209 (2024).Article CAS Google Scholar Wang, R. et al.
Efficient wide-bandgap perovskite photovoltaics with homogeneous halogen-phase distribution. Nat. Commun.
15, 8899 (2024).Article CAS PubMed PubMed Central Google Scholar Liang, Z. et al.
Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).Article CAS PubMed PubMed Central Google Scholar Park, S.
M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells.
Nature 624, 289–294 (2023).Article CAS PubMed Google Scholar Luo, Y. et al.
Enhanced efficiency and stability of wide-bandgap perovskite solar cells via molecular modification with piperazinium salt. Adv. Energy Mater.
14, 2304429 (2024).Article CAS Google Scholar McMeekin, D. P.
et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).
Article CAS PubMed Google Scholar Wang, J. et al. Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells.
Nat. Energy 9, 70–80 (2024).Article CAS Google Scholar Xiao, K.
et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant.
Nat. Energy 5, 870–880 (2020).Article Google Scholar Xiao, K.
et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules.
Science 376, 762–767 (2022).Article CAS PubMed Google Scholar Li, Z. et al.
In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics. Joule 7, 1363–1381 (2023).Article CAS Google Scholar Ma, C.
et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023).
Article CAS PubMed Google Scholar Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.
3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).
Article CAS Google Scholar Shen, X. et al. Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells.
Adv. Mater. 35, 2211742 (2023).
Article CAS Google Scholar Chen, B., Rudd, P. N.
, Yang, S., Yuan, Y. & Huang, J.
Imperfections and their passivation in halide perovskite solar cells. Chem. Soc.
Rev. 48, 3842–3867 (2019).Article CAS PubMed Google Scholar Cheng, W.
, He, X., Wang, J.-G.
, Tian, W. & Li, L. N-(2-aminoethyl) acetamide additive enables phase-pure and stable α-FAPbI3 for efficient self-powered photodetectors.
Adv. Mater. 34, 2208325 (2022).
Article CAS Google Scholar Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films.
Energy Environ. Sci. 9, 1752–1759 (2016).
Article CAS Google Scholar Zhu, J. et al. A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems.
Nat. Energy 8, 714–724 (2023).Article CAS Google Scholar Zhou, S.
et al. Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature 624, 69–73 (2023).
Article CAS PubMed Google Scholar Wen, J. et al. Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells.
Nat. Commun. 14, 7118 (2023).
Article CAS PubMed PubMed Central Google Scholar Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers.
Nat. Energy 3, 1093–1100 (2018).Article CAS Google Scholar Zhao, D.
et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat.
Energy 2, 17018 (2017).Article CAS Google Scholar Kresse, G. & Hafner, J.
Ab initio molecular dynamics for liquid metals. Phys. Rev.
B 47, 558–561 (1993).Article CAS Google Scholar Kresse, G. & Furthmüller, J.
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev.
B 54, 11169–11186 (1996).Article CAS Google Scholar Blöchl, P. E.
Projector augmented-wave method. Phys. Rev.
B 50, 17953–17979 (1994).Article Google Scholar Kresse, G. & Joubert, D.
From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev.
B 59, 1758–1775 (1999).Article CAS Google Scholar Perdew, J. P.
, Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.
Phys. Rev. Lett.
77, 3865–3868 (1996).Article CAS PubMed Google Scholar Grimme, S., Antony, J.
, Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.
J. Chem. Phys.
132, 154104 (2010).Article PubMed Google Scholar Li, X.-F.
et al. Insights into to the KX (X = Cl, Br, I) adsorption-assisted stabilization of CsPbI2Br surface. Small 18, 2202623 (2022).
Article CAS Google Scholar Jain, D., Chaube, S., Khullar, P.
, Goverapet Srinivasan, S. & Rai, B. Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases.
Phys. Chem. Chem.
Phys. 21, 19423–19436 (2019).Article CAS PubMed Google Scholar Momma, K.
& Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J.
Appl. Crystallogr. 44, 1272–1276 (2011).
Article CAS Google Scholar Wang, V., Xu, N., Liu, J.
-C., Tang, G. & Geng, W.
-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput.
Phys. Commun. 267, 108033 (2021).
Article CAS Google Scholar SEO Powered Content & PR Distribution. Get Amplified Today.PlatoData.
Network Vertical Generative Ai. Empower Yourself. Access Here.
PlatoAiStream. Web3 Intelligence. Knowledge Amplified.
Access Here.PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management.
Access Here.PlatoHealth. Biotech and Clinical Trials Intelligence.
Access Here.Source: https://www.nature.
com/articles/s41565-025-01899-z.
Technology
Piracetam shapes wide-bandgap perovskite crystals for scalable perovskite tandems

He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023). Article CAS PubMed Google Scholar Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). Article CAS PubMed Google Scholar Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite [...]